Kies de Nederlandse taal
Course module: 880022-M-6
Data Mining for Business and Governance
Course info
Course module880022-M-6
Credits (ECTS)6
CategoryMA (Master)
Course typeCourse
Language of instructionEnglish
Offered byTilburg University; Tilburg School of Humanities and Digital Sciences; TSH: Commun. and Inform. Sciences; TSH: Department Communication and Cognition;
Is part of
M Communication and Information Sciences
M Data Science and Society
C.D. Emmery, MSc
Other course modules lecturer
Academic year2017
Starting block
Course mode
RemarksThis information is not up to date. Check the Course Catalog 2018 or select the course via “Register”.
Registration opennot known yet
After the course the student will be able to:

1.         Explain the elementary principles of data mining and their application in different

2.         Navigate and reproduce common methods used in scientific work and understand key differences with other fields.

3.         Apply popular implementations of data mining algorithms and basic preparation of data.

4.         Recognize the potential and limitations of data and algorithms.

5.         Identify important components and tools in the data science ecosystem.


Data Mining for Business and Governance will be accessible for all students (no technical background required). During the course, students will complete mandatory assignments in which they will train their basic data mining skills in the domain of social media and behaviour. The experiments and assignments will be performed with open-source data mining software (jupyter, pandas, and scikit-learn). There will be one midterm exam to ensure that students keep on track with the course contents. The course is completed with a written exam.

This course is compulsory for students of the track Data Science: Business and Governance (2016-2017). Passing the course is a prerequisite for Master thesis/Data Science in Action in the DSBG track.
Data Science methods are becoming the main tools for acquiring information both in business context and in scientific research. The course offers a thorough introduction in the use of data mining for analysis of various domains. Upon completion of the course, students will have acquired the skills necessary to apply data mining to extract information from large data sets and transform it into an understandable structure. In addition, students will be familiarized with advanced topics, including deep learning, time series and graph analyses. The perspective of the course is application-oriented and serves to provide students with the knowledge and experience that is in line with the current demand for skilled data scientists. 

Compulsory Reading
  1. Research papers, see Blackboard.
Required materials
Recommended materials

Kies de Nederlandse taal