Kies de Nederlandse taal
Course module: 880243-M-6
Social Signal Processing
Course info
Course module880243-M-6
Credits (ECTS)6
CategoryMA (Master)
Course typeCourse
Language of instructionEnglish
Offered byTilburg University; Tilburg School of Humanities and Digital Sciences; TSH: Department Cognitive Science and AI; TSHD: Department Cognitive Science and AI;
Is part of
M Communication and Information Sciences
dr. M. Atzmüller
Other course modules lecturer
Academic year2019
Starting block
Course mode
Registration openfrom 25/03/2020 up to and including 21/08/2020
The general goal of the course is to provide students with theoretical and practical knowledge and skills required to identify, compute, model, and analyze social signals and social interactions. This also includes modeling and analysis of social networks. We focus on social signals including non-verbal cues to speakers' emotions, attitudes, social roles, and interaction structure, also reflected in (collective) social interactions and dynamics. Automatic processing and analysis of these can play an important supporting role in a number of areas and applications (e.g., intelligent tutoring and control systems, crowd control, analysis of group interaction). For investigation, we apply data analysis and (complex) network analytics methods.

Learning goals - Assignments (students may work in pairs):
  • Describe a highly relevant complex social signal (e.g., engagement in the context of gaming)
  • Construct an experimental task in which social signals and social interactions can be elicited/collected/analyzed using sensors and appropriate recordings (e.g., audio/video, smartphone sensors, and special sensors).
  • Process the data collected in the task utilizing according software.
  • Quantitatively analyze the outcomes.
  • Draw conclusions from the quantitative analysis regarding the role of the collected social signal data and the success of the task design.
Learning goals - Final Exam (open questions):
  • Describe the core concepts of social signals, including behavioral and social cues.
  • Define and explain the assumptions and objectives of Social Signal Processing.
  • Describe the use of Social Signal Processing technology in practice.
  • Reason about the relationship between behavioral and social cues/methods in different situations; be able to illustrate the relationship with examples.
  • Evaluate the use of Social Signal Processing techniques for novel applications.

The course consists of one lecture and one tutorial each week. In the lectures we discuss theories and research literature related to the main research topics. During the tutorials we practice with selected technology. Students will learn to analyze automatically behavioral cues displayed by speakers (e.g., postures, vocalizations) and their interaction structures, and how to interpret them as social signals and affective signals. Furthermore, students will learn how to analyze social structures and behavior both on the individual as well as the group level.

  • Attendance of practical sessions is expected. During the practical sessions, students can collect bonus points for in-class assignments.
  • For the practical assignment in this course, students are expected to have working knowledge of methods in statistics; practical analysis will be performed using the R software for statistical computing. There will be a brief targeted introduction providing pointers to relevant R material in the course, while acquiring basic knowledge of R before taking the course is recommended, and is the responsibility of the student.
  • The final grade for this course is the weighted average of the practical group assignment (40%) and the final exam (60%) which is individual. In order to pass the course, both the average grade AND the grade of the final exam must be sufficient. Resits are only allowed for the final exam.

Compulsory Reading
  1. The literature for this course (on average two journal articles or chapters per class) will be announced through Blackboard.
  2. Further recommended literature and reading materials will be announced in the course and via blackboard.
Course available for exchange students
Master level, conditions apply
Contact person
dr. M. Atzm├╝ller
Timetable information
Social Signal Processing
Required materials
Recommended materials

Final Result

Paper (40%)

Kies de Nederlandse taal