Kies de Nederlandse taal
Course module: 424533-B-5
Correlational Research Methods
Course info
Course module424533-B-5
Credits (ECTS)5
CategoryBA (Bachelor)
Course typeCourse
Language of instructionDutch
Offered byTilburg University; Tilburg School of Social and Behavioral Sciences; TSB: Methodology and Statistics; Methodology and Statistics;
Is part of
B Psychology (Dutch)
Contact persondr. M. Bakker
Coordinator course
L.J.A.M. van Baest
Other course modules lecturer
dr. M. Bakker
Other course modules lecturer
Coordinator course
dr. M. Bakker
Other course modules lecturer
Academic year2019
Starting block
Course mode
Registration openfrom 13/08/2019 up to and including 21/08/2020
Students …
  • are able to describe the differences between experimental, quasi-experimental, and correlational research designs, and they are able to infer from research examples which research design was used;
  • are able to describe and reproduce in their own words the basic concepts of simple regression. These basic concepts include: linear association, least-squares estimation, explained variance, Multiple R-square, multiple correlation, adjusted R-square, raw and standardized regression coefficients, model tests, predicted scores, and residuals;
  • are able to explain the differences between zero-order, partial, and semi-partial (part) associations, both from a statistical perspective and a substantive point of view; they are able to link the different associations with real research questions; they are able to reconstruct from a Venn diagram, the zero-order, partial, and semi-partial correlations and multiple R-square values for regression models with two continuous predictors;
  • are able to execute a (logistic) linear multiple regression analyses (using SPSS) for models including continuous and categorical predictors; both for models with main effects only, and models including interactions between categorical and continuous variable, or two continuous variables;
  • are able to correctly interpret practical applications of hierarchical regression analysis; are able to test significance of the R-square change using the F-test (using SPSS and by hand) and are able to correctly interpret the results; are able to design the hierarchical analysis given the research question envisaged;
  • are able to choose the appropriate regression analysis given the research question envisaged;
  • are able to draw the correct substantive conclusions from results of the regression analyses, within the context of psychological research;
  • are able to reproduce the four basic assumptions of multiple regression analyses and they are able to test the tenability of the assumptions in real data;
  • are able to apply the following concepts from inferential statistics (as taught in the course Introduction to Statistics) within the context of multiple (logistic) regression analysis: null hypothesis significance testing, one-tailed versus two-tailed testing, test statistics, p-values, confidence intervals, Type I and Type II errors, power, precision, statistical versus practical significance, effect sizes;
  • know the APA guidelines with respect to reporting the results of (hierarchical) multiple (logistic) regression;
  • know the commonly accepted rules of thumb for interpretation of effect sizes in terms of explained variances;
  • know the concepts of probabilities, odds and logits; they know the relationship between the three scales; they are able to transform one into another (formulae are provided).
This course includes the following subjects:
  • Correlational research designs
  • Linear regression analysis: simple and multiple regression analysis, tests of single regression parameters, tests for model comparison, tests for a set of parameters, categorical predictors using dummies, interactions and probing of simple effects when significant interactions are found, model assumptions and testing their tenability in real data.
  • Binary logistic regression analysis, using continuous and categorical predictors, including hierarchical logistic regression, and logistic regression with interaction effects.

  • Tutorials. We offer tutorials in which the subjects are discussed and where students can practice the matters at hand. Although the tutorials are not compulsory, we do expect students to follow them. They are complementary to the lectures. We also expect active participation of the students in the tutorials. Students are not allowed to attend other tutorials than the one they did subscribe for.
  • SPSS lab sessions. Part of this course are two lab sessions in which students complete exercises in SPSS. The SPSS skills will be tested during an exam.
The grading of the course consists of two parts: the course exam (graded 1-10) and the SPSS practical (graded pass-fail). A student passes the course and receives the corresponding ects when he/she is graded a 6 or higher in the course exam and a pass in the SPSS practical. Both partial results remain valid after the academic year in which they were obtained.
Timetable information
Correlational Research Methods
Written test opportunities
Written test opportunities (HIST)
SPSS toets / SPSS testEXAM_02BLOK 1102-12-2019
Schriftelijk / WrittenEXAM_01BLOK 2109-12-2019
Schriftelijk / WrittenEXAM_01BLOK 2214-01-2020
SPSS toets / SPSS testEXAM_02BLOK 1220-01-2020
Required materials
The book that is used in this course is a customized edition of the book Applied Statistics by Rebecca Warner. This (cheaper) edition, specifically developed for TSB, has a different title (Introduction to Techniques for Causal Analysis) and author (John Gelissen) and is only available via the study association or via Studystore. You can also still use the original book (Warner, ISBN: 9781412991346; second edition)
Title:Custom: Introduction to Techniques for Causal Analysis
Author:John Gelissen
Slides/Lecture notes (beschikbaar via Canvas).
Recommended materials

SPSS test

Kies de Nederlandse taal