Kies de Nederlandse taal
Course module: 320091-M-6
Business Analytics and Emerging Trends
Course info
Course module320091-M-6
Credits (ECTS)6
CategoryMA (Master)
Course typeCourse
Language of instructionEnglish
Offered byTilburg University; Tilburg School of Economics and Management; TiSEM: Management; TiSEM: Management;
Is part of
M Marketing Analytics
M Communication and Information Sciences
M Information Management
M Supply Chain Management
M Data Science and Society
dr. S. Angelopoulos
Other course modules lecturer
dr. H. Weigand
Other course modules lecturer
Academic year2019
Starting block
Course mode
Registration openfrom 07/10/2019 up to and including 24/01/2020
With the digitalization of enterprise information systems, the proliferation of internet and the widespread use of mobile devices and sensor technology, the amount of data stored in systems has grown enormously. Simultaneously, high speed CPU and fast massive memory enable new business analytics, like web analytics, text mining and social network analysis.
After completing this course, you will be able to:
  • Explain the main trends in business analytics;
  • Assess new IT developments from a business value perspective;
  • Make use of Python and process mining tools for business analytics on a basic level
The course consists of lectures, lab sessions, guest lectures and a group paper assignment. Topics covered in the lectures include:
  • Creating value with big data;
  • Industry 4.0
  • Text mining, social network analysis;
  • Smart auditing, process mining;
  • High-performance data processing;
  • Responsible data science
For each lecture, you have to read some scientific articles or other background material. The lab part is mainly by self-study and introduces you to process mining and to the programming language Python (not for students Data Science & Society). In addition, guest lectures will provide insight in practical applications in e.g. auditing, marketing and logistics. Students from Data Science & Society have to write a group paper that gives a critical evaluation of the application of business analytics in some business domain. Students from IM or other programs have to submit a Python assignment.
Type of instructions
Lectures, self-study, lab sessions and guest lectures
Type of exams
Written exam and assignment
The result of the assignment is not transferable to the next year.
Students are expected to have a basic level of Statistics, or to acquire that with selfstudy in the first weeks.

Contact person
dr. H. Weigand
Timetable information
Business Analytics and Emerging Trends
Written test opportunities
Written test opportunities (HIST)
Schriftelijk (80%) / Written (80%)EXAM_01BLOK 2117-12-2019
Schriftelijk (80%) / Written (80%)EXAM_01BLOK 2216-01-2020
Required materials
Scientific articles to be announced.
Recommended materials
List of literature
Verhoef, P.C., Kooge, E. & N. Walk, Creating Value with Big Data Analytics making smarter marketing Decisions, Routledge, 2016. ISBN-13 978-1138837973, ISBN-10 1138837970
Title:Creating Value with Big Data Analytics making smarter marketing Decisions,
Author:Verhoef, P.C., Kooge, E. & N. Walk
Assignment (20%)

Written (80%)

Final Result

Kies de Nederlandse taal